EFEITO DA INTERAÇÃO ZINCO E CÁDMIO SOBRE VARIÁVEIS BIOMÉTRICAS EM FEIJÃO CAUPI (Vigna unguiculata (L.) Walp.)

Conteúdo do artigo principal

Gilberto de Souza e Silva Júnior
Rannilson Cabral Pereira e Silva
Luiz Evandro da Silva

Resumo

O feijão caupi (Vigna  unguiculata (L.) Walp.) é um  dos mais  importantes  componentes  da dieta  alimentar  do brasileiro,  por  ser  reconhecidamente  uma  excelente fonte proteica, além de possuir bom conteúdo de carboidratos, vitaminas,  minerais,  fibras  e  compostos  fenólicos  com  ação antioxidante. Os solos contaminados com metais pesados tornaram-se um problema sério em muitas partes do mundo. Estudos realizados demostram que altas concentrações de metais pesados no solo podem ser resultantes de diferentes fontes antrópicas, como atividades industriais, agrícolas e de tráfego. O presente trabalho teve como objetivo avaliar o efeito do zinco sobre a toxidez de cádmio em variáveis biométricas em feijão caupi. O experimento foi conduzido em casa de vegetação da Universidade Federal Rural de Pernambuco, em Recife. O delineamento experimental utilizado foi o inteiramente casualizado com cinco repetições, em um arranjo fatorial entre três doses de zinco (0,025; 0,05 e 0,1 mg.L-1) e duas doses de cádmio (0 e 14,84 mg.L-1) na solução nutritiva de Hoagland e Arnon, totalizando 30 unidades experimentais. As variáveis biométricas analisadas foram: NF, ØC, ALT, AF, BFF, BFCP, BFR, BFT, BSF, BSCP, BSR, BST, ABF, ABCP, ABR, SCF, SCCP, SCR, RAF, IE, TAL, PA/R, TCA e TCR. Os resultados das variáveis biométricas foram analisados estatisticamente por meio de programa estatístico, procedendo-se a análise de variância e aplicação do teste de Tukey, ao nível de 5% de probabilidade, para a comparação das médias. A presença de cádmio (Cd) à solução nutritiva ocasionou reduções significativas (>50%), em relação ao controle, em 58% das variáveis biométricas analisadas, conferindo assim seu efeito tóxico a cultivar MIRANDA IPA.

Detalhes do artigo

Como Citar
DE SOUZA E SILVA JÚNIOR, G.; CABRAL PEREIRA E SILVA, R.; PAES BARRETO, L.; DA SILVA, L. E. EFEITO DA INTERAÇÃO ZINCO E CÁDMIO SOBRE VARIÁVEIS BIOMÉTRICAS EM FEIJÃO CAUPI (Vigna unguiculata (L.) Walp.). Revista Eletrônica Multidisciplinar de Investigação Científica, Brasil, v. 3, n. 15, 2024. DOI: 10.56166/remici.d2v3n1511424. Disponível em: https://remici.editorapublicar.com.br/index.php/revista/article/view/291. Acesso em: 18 jan. 2025.
Seção
Artigos

Referências

BALTAS, H. et al. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province. Chemosphere, Turkey, v. 241, p. 125015, fev. 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0045653519322544?via%3Dihub#cebib0010. Acessado em: Fev. 2023.

BAPTISTA, S. M.P. Avaliação da resposta ao stresse oxidativo induzido por cádmio e cobre em plantas de tabaco tranformadas e não transformadas. 2009. 66 f. Dissertação (Mestrado) - Curso de Engenharia do Ambiente, Universidade Técnica de Lisboa, Lisboa, 2009. Disponível em: https://www.repository.utl.pt/bitstream/10400.5/1059/1/Dissertação%20%20de%20Mestrado%20-%20Sérgio%20Baptista.pdf. Acessado em: Out. 2022.

BENINCASA, M. M. P. Análise de crescimento de plantas (noções básicas). Jaboticabal: FUNEP, 2003. 41p.

BROADLEY, M. R. et al. Zinc in plants. New Phytologist, [S.L.], v. 173, n. 4, p. 677-702, 7 fev. 2007. Disponível em: https://doi.org/10.1111/j.1469-8137.2007.01996.x. Acessado em: Fev. 2023.

CHAVES, L. H. G.; ESTRELA, M. A.; SOUZA, R. S. de. Effect on plant growth and heavy metal accumulation by sunflower. Journal of Phytology, [S. l.], v. 3, n. 12, 2011. Disponível em: https://updatepublishing.com/journal/index.php/jp/article/view/2736. Acessado em: Abr. 2023.

CHO, U.; SEO, N. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, [S.L.], v. 168, n. 1, p. 113-120, jan. 2005. Disponível em: https://doi.org/10.1016/j.plantsci.2004.07.021. Acessado em: Abr. 2023.

DECHEN, A. R.; NACHTIGALL, G. R. Micronutrientes. In: FERNANDES, M. S. Nutrição mineral de plantas. Viçosa, MG: SBCS, 2006. p. 327-354.

DOABI, S. A. et al. Mojgan. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety, [S.L.], v. 163, p. 153-164, nov. 2018. Disponível em: http://dx.doi.org/10.1016/j.ecoenv.2018.07.057. Acessado em: Mar. 2023.

ESSIEN, J. P. et al. Ecotoxicological status and risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Nigeria. Environmental Nanotechnology, Monitoring & Management, [S.L.], v. 11, p. 100215, maio 2019. Disponível em: http://dx.doi.org/10.1016/j.enmm.2019.100215. Acessado em: Fev. 2023.

FATOKUN, C. A. et al. Challenges and opportunities for enhancing sustainable cowpea production: Proceedings of the world cowpea conference III held at IITA, Ibadan, Nigeria, 4-8 September 2000. Ibadan, Nigeria: IITA. (433p.). Disponível em: https://cgspace.cgiar.org/handle/10568/99857. Acessado em: Out. 2022.

FERREIRA, D. F Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, [S.L.], v. 35, n. 6, p. 1039-1042, dez. 2011. Disponível em: http://dx.doi.org/10.1590/s1413-70542011000600001. Acessado em: Jan. 2023.

FILIPPIS, L. F. de; ZIEGLER, H. Effect of Sublethal Concentrations of Zinc, Cadmium and Mercury on the Photosynthetic Carbon Reduction Cycle of Euglena. Journal of Plant Physiology, [S.L.], v. 142, n. 2, p. 167-172, ago. 1993. Disponível em: http://dx.doi.org/10.1016/s0176-1617(11)80958-2. Acessado em: Abr. 2023.

FODOR, E.; SZABO-NAGY, A.; ERDEI, L. The Effects of Cadmium on the Fluidity and H+-ATPase Activity of Plasma Membrane from Sunflower and Wheat Roots. Journal of Plant Physiology, [S.L.], v. 147, n. 1, p. 87-92, jan. 1995. Disponível em: http://dx.doi.org/10.1016/s0176-1617(11)81418-5. Acessado em: Jan. 2023.

FORNAZIER, R. F. et al. Effects of Cadmium on Antioxidant Enzyme Activities in Sugar Cane. Biologia Plantarum, [S.L.], v. 45, n. 1, p. 91-97, 1 mar. 2002. Disponível em: http://dx.doi.org/10.1023/a:1015100624229. Acessado em: Fev. 2023.

FREIRE FILHO, F. R. et al. Melhoramento genético, p. 29-92. In: FREIRE FILHO, F. R., J. A. A. LIMA, J. A. de A.; RIBEIRO, V. Q. Feijão–caupi: avanços tecnológicos. Brasília : Embrapa Informação Tecnológica, 2005, 519 p. Disponível em: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/897440/1/Producaomelhoramento.pdf. Acessado em: Set. 2023.

FREIRE FILHO, F. R. et al. Melhoramento genético de caupi (Vigna unguiculata (L.) WALP.) na região do nordeste. In: Recursos Genéticos e Melhoramento de Plantas para o Nordeste Brasileiro. Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, 30 p. 2006.

GAJDOS, E. et al. Effects of Biofertilizers on Maize and Sunflower Seedlings under Cadmium Stress. Communications in Soil Science and Plant Analysis, [S.L.], v. 43, n. 1-2, p. 272-279, jan. 2012. Disponível em: http://dx.doi.org/10.1080/00103624.2011.638591. Acessado em: Jan. 2023.

GROTZ, N. et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of The National Academy of Sciences, [S.L.], v. 95, n. 12, p. 7220-7224, 9 jun. 1998. Disponível em: http://dx.doi.org/10.1073/pnas.95.12.7220. Acessado em: Fev. 2023.

GUIMARÃES, M. A. et al. Cadmium toxicity and tolerance in plants (Toxicidade e tolerância ao cádmio em plantas). Revista Trópica - Ciências Agrárias e do Ambiente, [S.I], v.1, n.3, p. 58-68, jan.2008. Disponível em: https://www.researchgate.net/publication/246044549_Cadmium_toxicity_and_tolerance_in_plants_Toxicidade_e_tolerancia_ao_cadmio_em_plantas. Acessado em: Fev. 2023.

HOAGLAND, D. R.; ARNON, D.L. The water culturemethods for growing plants without soil. Berkeley: CaliforniaAgriculture Experiment Station, 1950.

HSU, Y. T.; KAO, C. H. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation, [S.L.], v. 42, n. 3, p. 227-238, mar. 2004. Disponível em: http://dx.doi.org/10.1023/b:grow.0000026514.98385.5c. Acessado em: Abr. 2023.

HUANG, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, [S.L.], v. 207, p. 159-168, fev. 2018. Disponível em: http://dx.doi.org/10.1016/j.jenvman.2017.10.072. Acessado em: Fev. 2023.

JIA, X. et al. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: a case study in the yangtze delta, china. Environmental Pollution, China, v. 250, p. 601-609, jul. 2019. Disponível em: http://dx.doi.org/10.1016/j.envpol.2019.04.047. Acessado em: Maio. 2023.

KABATA-PENDIAS, A. Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press, 2010. 505p. 315p.

LASAT, M. M. et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, [S.L.], v. 51, n. 342, p. 71-79, jan. 2000. Disponível em: http://dx.doi.org/10.1093/jexbot/51.342.71. Acessado em: Maio. 2023.

LIMA, C. J. G. S. Modelos matemáticos para estimativa de área foliar de feijão caupi. Revista Caatinga, Mossoró, v.21, n.1, p.120-127, jan-mar. 2008. Disponível em: https://www.redalyc.org/pdf/2371/237117576018.pdf. Acessado em: Fev. 2023.

MILONE, M. T. et al. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany, [S.L.], v. 50, n. 3, p. 265-276, dez. 2003. Disponível em: http://dx.doi.org/10.1016/s0098-8472(03)00037-6. Acessado em: Mar. 2023.

MORENO, J. L.; HERNANDEZ, T.; GARCIA, C. Effects of a cadmium-contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biology and Fertility of Soils, [S.L.], v. 28, n. 3, p. 230-237, jan. 1999. Disponível em: http://dx.doi.org/10.1007/s003740050487. Acessado em: Mar. 2023.

NI, M. et al. Heavy metals in soils of Hechuan County in the upper Yangtze (SW China): comparative pollution assessment using multiple indices with high-spatial-resolution sampling. Ecotoxicology and Environmental Safety, [S.L.], v. 148, p. 644-651, fev. 2018. Disponível em: http://dx.doi.org/10.1016/j.ecoenv.2017.11.009. Acessado em: Mar. 2023.

PEREIRA, A. C. C. et al. Análise e monitoramento de metais pesados no solo. In: F. S. C. Adelaide, N. C. Aureliano (Eds.). Valores orientadores de qualidade de solos no Espírito Santo. Vitória: Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, p. 71-89. Disponível em: https://www.researchgate.net/publication/286453977_ANALISE_E_MONITORAMENTO_DE_METAIS_PESADOS_NO_SOLO. Acessado em: Dez. 2022.

PINTO, A. P.et al. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of The Total Environment, [S.L.], v. 326, n. 1-3, p. 239-247, jun. 2004. Disponível em: http://dx.doi.org/10.1016/j.scitotenv.2004.01.004. Acessado em: Mar. 2023.

POLLE, A. Dissecting the Superoxide Dismutase-Ascorbate-Glutathione-Pathway in Chloroplasts by Metabolic Modeling. Computer Simulations as a Step towards Flux Analysis. Plant Physiology, [S.L.], v. 126, n. 1, p. 445-462, mai. 2001. Disponível em: http://dx.doi.org/10.1104/pp.126.1.445. Acessado em: Mar. 2023.

PRASAD, M. N. V. Phytoremediation of Metals in the Environment for Sustainable Development. Proc Indian Natl Sci Acad, Indian, v.70, n.1, p 71-98, jan. 2004. Disponível em: https://www.researchgate.net/publication/284049757_Phytoremediation_of_Metals_in_the_Environment_for_Sustainable_Development/fulltext/5c0fbb76a6fdcc494febffc2/Phytoremediation-of-Metals-in-the-Environment-for-Sustainable-Development.pdf. Acessado em: Maio. 2023.

PRASAD, M. N .V.; STRZALKA, K. Physiology and biochemistry of metal tocicity and tolerance in plants. Kluwer Academic, Dordrecht: Springer Dordrecht, 2002.

QING, X.; YUTONG, Z.; SHENGGAO, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, [S.L.], v. 120, p. 377-385, out. 2015. Disponível em: http://dx.doi.org/10.1016/j.ecoenv.2015.06.019. Acessado em: Maio. 2023.

SANITÁ DI TOPPI, L.; GABBRIELLI, R. Response to cadmium in higher plants. Environmental and Experimental Botany, [S.L.], v. 41, n. 2, p. 105-130, abr. 1999. Disponível em: http://dx.doi.org/10.1016/s0098-8472(98)00058-6. Acessado em: Maio. 2023.

SARWAR, N. et al. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of The Science of Food And Agriculture, [S.L.], v. 90, n. 6, p. 925-937, mar. 2010. Disponível em: http://dx.doi.org/10.1002/jsfa.3916. Acessado em: Jun. 2023.

SHAH, K. et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, [S.L.], v. 161, n. 6, p. 1135-1144, nov. 2001. Disponível em: http://dx.doi.org/10.1016/s0168-9452(01)00517-9. Acessado em: Nov. 2022. em: Dez. 2022.

SHAW, B. P.; SAHU, S. K.; MISHRA, R. K. Heavy Metal Induced Oxidative Damage in Terrestrial Plants. Heavy Metal Stress in Plants, [S.L.], p. 84-126, abr. 2004. Acesso em: http://dx.doi.org/10.1007/978-3-662-07743-6_4. Acessado em: Nov. 2022.

SOUZA-SANTOS, P.; RAMOS, R. S.; CARVALHO-ALVES, P. C. Iron-induced oxidative damage of corn root plasma membrane H+-ATPase. Biochimica Et Biophysica Acta (Bba) - Biomembranes, [S.L.], v. 1512, n. 2, p. 357-366, jun. 2001. Disponível em: http://dx.doi.org/10.1016/s0005-2736(01)00341-8. Acessado em: Out. 2022.

SUN, Z. et al. Heavy metal pollution caused by small-scale metal ore mining activities: a case study from a polymetallic mine in south china. Science of The Total Environment, [S.L.], v. 639, p. 217-227, out. 2018. Disponível em: http://dx.doi.org/10.1016/j.scitotenv.2018.05.176. Acessado em: Nov. 2022.

WU, J. et al. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere, [S.L.], v. 201, p. 234-242, jun. 2018. Disponível em: http://dx.doi.org/10.1016/j.chemosphere.2018.02.122. Acessado em: Out. 2022.

XIANG, C. et al. The Biological Functions of Glutathione Revisited in Arabidopsis Transgenic Plants with Altered Glutathione Levels. Plant Physiology, [S.L.], v. 126, n. 2, p. 564-574, jun. 2001. Disponível em: http://dx.doi.org/10.1104/pp.126.2.564. Acessado em: Nov. 2022.

XU, X. et al. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicology and Environmental Safety, [S.L.], v. 108, p. 161-167, out. 2014. Disponível em: http://dx.doi.org/10.1016/j.ecoenv.2014.07.001. Acessado em: Out. 2022.

ZHANG, P. et al. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Science of The Total Environment, [S.L.], v. 633, p. 1136-1147, ago. 2018. Disponível em: http://dx.doi.org/10.1016/j.scitotenv.2018.03.228. Acessado em: Out. 2022.

ZHAO, R. et al. Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye agricultural soil from the perspective of sources. Science of The Total Environment, [S.L.], v. 697, p. 134126, dez. 2019. Disponível em: http://dx.doi.org/10.1016/j.scitotenv.2019.134126. Acessado em: Out. 2022.

ZOU, J. et al. Accumulation of Cadmium in three sunflower (Helianthus annuus L.) cultivars. Pak. J. Bot, [S.I], v.40, n.2, p.759-765, abr. 2008. Disponível em: https://www.pakbs.org/pjbot/PDFs/40(2)/PJB40(2)759.pdf. Acessado em: Out. 2022.